3: Characterizing MNE and Zero-Sum Games

Wednesday, 24 August 2022 10:33 AM

Characterizing MNE: Recall our defn. of a mixed Mash Equilibrium: For n-player games: or = (o, *, ..., on *) is a MNE if, & playes i, and any alternate mixed strategy of'E Zi, $U_{i}\left(\sigma_{i}^{\star},\sigma_{i}^{\star}\right) \geq U_{i}\left(r_{i}^{\prime},\sigma_{i}^{\star}\right)$ i.e., for each player i, if all players j = i are playing of, player i maximizes utility by playing of (or, it is a "bust-response" to oft) For a 2-player game R, C (G R^{mxn}): x*, y* is a MNE if & x' & Dm, y' & Dn, $x^{*T}Ry^{*} \ge x^{'T}Ry^{*}$ and y*TCx* >> y'TCx* The quistion we now want to aswer is, given a 2-player game R, C, and stratigy profile X*, y*, Con we check in pour-time if (x*, y*) is a MNE? By depr., this is equivalent to verifying if x" is a pest-rusponse to yr, & vice - vuse. Let's define BR(y*) = arg max X^TRy* XEDn & BR(x*) = arg max y⁷(x* yEBn Then by defn., (X*, y*) is a MNE if and only if $x^* \in BR(y^*), \quad & y^* \in BR(x^*)$ Okay, so how do we check if x* tBR by A y* t BP (x*)? Example : Lecall the peralty Shoot - out game: $L_{10} - 5 - 5^{5}$ K $R = 5 = 10^{-5}$ Say G plays $y^{*} = (\frac{1}{2}, \frac{1}{2})$. Then $Ry^{*} = \begin{bmatrix} 2 \cdot 5 \\ 2 \cdot 5 \end{bmatrix}$, and all actions are best-responded, i.e., $BR(y^{*}) = X_{2}$. Say 6 plays y^* : ($y_3, 2y_3$). Then $Ry^* = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$, and K'spust response is to play R w. p 1, i.e., $BR(y^{*}) = (0, 1)$. We show that a mixed action is a pest-response iff it is supported on pure pest-responses.

For a mixed action x E Bm, define supp(x) = {i: xi > 0} be the set of pure strategies planed with positive probability

be the let of pure civitizing played with post-two probability
(similarly define capping) for ye ba)
Respectives for a d-player game (i.e.(s) and relyed
(tratig 14 (x', y'), b2 (y') = {x : supply) C arrows (Ry');]
A BE(x*) = {y : supply) C arrows (C **);]
Recof: Let
$$V_{k} = \max_{i \in \{1\}} (B_{i}^{-1}) = k$$
 the movinum value.
obtained by any pure strategy for the row player. The charly,
for any strategy supported on ay more (Ry*);, the
expected payoff is V_{k} .
Firston, any strategy for the row player. The charly,
for any strategy supported on ay more (Ry*);, the
expected payoff is V_{k} .
Firston, any strategy for the row player. The charly,
for any strategy supported on ay more (Ry*);, the
expected payoff is V_{k} .
Firston, any strategy for the row player. The charly,
for any strategy supported on ay more (Ry*);
the expected payoff is strictly best-than V_{k} .
Firston, any strategy for the strateging of max expected payoff
and non-optimal powe strategy (i.e., x_{k} so for the argume (Ry*));
look at the set of first strateging of max expected payoff
and none (Ry*); A charle the support (Ry*);
Similarly we can check if y^{*} sell(x)
If both as best we ports to according the (K', y^{*}) is a most
forticle the column player perspective. Support it plays
y. Then the row player extitue for it's strateging are
Ry (the is a column vector).
If the vow playe choster best-vectored to each
max (Ry); , and here the actions player
gets - may (Ry); .
direc at equilibrium both glayes bai-relefored to each
offer (by origh), the column player Should chose y
here only dight, the column player should chose y

Note that we are not saying that such a y is an equilibrium strategy, in particular why y is a best-ruponfe to the row-playe's strategy (it may not be !)

But we can find such a y by an LP:

$$max \qquad z \qquad | \\ s.t. \forall i, (-ky)_i \geqslant z \qquad | \\ P_c \qquad z \\ j \qquad ji \qquad = 1 \qquad \\ y \qquad > 0 \qquad | \end{cases}$$

Similarly, for the row player, a good strategy would be to choose x which optimizes:

s.t.
$$U_{j}$$
, $(-C_{X})_{j} \ge w$
 $\sum_{i} X_{i} = 1$
 i
 $X \ge 0$
 $Y_{X} = 1$
 i
 $X \ge 0$
 $(vew riting P_{R})$

Let us write the dual of PR. This is:

Note that D_R is nearly the same as P_C , except that the objective value gets negated. I.E., (y^*, z^*) is optimal for D_R iff (y^*, z^*) is optimal for P_C .

Let (x^*, w^*) be optimal for P_R , $k (y^*, z^*)$ be optimal for P_C . Then by strong duality, $-z^* = w^*$.

game

Consider y*. We know that if column plays plays
$$y^*$$
,
and if row-playe best-responds, column player gets Z^*
(negation of D_E). Thus, row-player gets $-Z^*$. Thus for any
response to y^* , now-player gets at most $-Z^*$.
 $\forall x = x^{\dagger} R y^* \leq -Z^* = W^*$
Now consider x^* , similar to above, for any strategy y .
row player gets at last W^* .
 $\forall y = x^{*T} R y^* \geq w^*$.
Thus, $x^{*T} R y^* \geq w^*$.
Thus, $x^{*T} R y^* \geq w^*$.
Similarly we can show that y^* is a best-response

Theorem: Let
$$(x^*, y^*)$$
 be a NE of a geno-sum game, if
 w^* , z^* be payoffs of the two payes.
Then (x^*, w^*) is an optimal setu: for Pr, and
 (y^*, z^*) is an optimal solution for Pc.
if Prove gowself.

Transforming the forgeff matrices
Let
$$k, C$$
 be a two-plane gener, k let x^*, y^* in a
MARE for (R, C)
Suppose we and $k \in R$ is very long in R . is
 $\{x^*, y^*\}$ still a matrix of data gener Y
Chown: Give a 2-page gene 2, C, j 2 $[n]$ and $\lambda \in R$
Let $R' = R + \lambda + 1 + 2^{n-1}$ then for any $\lambda \in \Delta_{n-1}$ if d_{n-1}
 $R = 2 + [2n + \lambda + 2^{n-1}]$ is matrix R'
 $R' = 2 + [2n + \lambda + 2^{n-1}]$ is a matrix R'
 $R' = 2 + [2n + \lambda + 2^{n-1}]$ is a matrix R'
 $R' = 2 + [2n + \lambda + 2^{n-1}]$ is a data net
 $d_{n-1} \geq n = 0$
i.e. adding λ is long the intermedium in R data net
 $d_{n-1} \geq n = 0$
i.e. adding λ is long the intermedium in R data net
 $d_{n-1} \geq x^*$ of boot - Composite
Note that this water that (R', g^*) is a MARE in R, C life
 (R, g^*) is a RAFE in (R', g^*) is a MARE in R, C life
intermedium that suppose $(Rg^*)_{1}$
is and is lineer that $(ngp(R))_{1} = ng$ mane $(R'g^*)_{1}$
Rest for any $R \leq \ln_{2}$, the pageoff shifts by exactly $\lambda \cdot g^* =$
 $(R'g^*)_{R} = (2g^*)_{R} + \lambda (4 = g^*)_{1}$
 $= (Rg^*)_{R} - \lambda \cdot g^*_{1}$
Since each coordinate shifts by its some summent,
 $ng mane (Rg^*)_{1} = ng man (R + g^*)_{1}$
 R during supplies of any man (R + g^*)_{1}
The observations fordows by gravety.
 $R = (Rg^*)_{1} = ng man (R + g^*)_{1}$
 $R = (R + R) + R + (n + R)$
 $\frac{1}{n} + \frac{1}{n} + \frac{1$

The
$$(x^*, y^*)$$
 is MNE for (l, c)
 (x^*, y^*) is MNE for (l^1, c^1) .